Linear Algebra [KOMS119602] - 2022/2023

12.2 - Types of Linear Transformation

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 13 (December 2022)

1/30 © Dewi Sintiari/CS Undiksha

Learning objectives

After this lecture, you should be able to:

- 1. explain the concept of various types of linear transformation among vectors in vector spaces;
- 2. perform a linear transformation (reflection, projection, rotation, dilation, expansion, shear) on a vector in a vector space.

2/30 © Dewi Sintiari/CS Undiksha

Basic Matrix Transformations in \mathbb{R}^2 and \mathbb{R}^3

(page 259 of Elementary LA Applications book)

3 / 30 © Dewi Sintiari/CS Undiksha

1. Reflection

4 / 30 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Reflection operators on \mathbb{R}^2

Reflection operators are operators on \mathbb{R}^2 (or \mathbb{R}^3) that maps each point into its symmetric image about a fixed line or a fixed plane that contains the origin.

Operator	Illustration	Images of e1 and e2	Standard Matrix
Reflection about the <i>x</i> -axis T(x, y) = (x, -y)	$T(\mathbf{x}) \xrightarrow{y} (x, y)$	$T(\mathbf{e}_1) = T(1, 0) = (1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, -1)$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the y-axis T(x, y) = (-x, y)	$(-x, y) \qquad $	$T(\mathbf{e}_1) = T(1,0) = (-1,0)$ $T(\mathbf{e}_2) = T(0,1) = (0,1)$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection about the line $y = x$ T(x, y) = (y, x)	$T(\mathbf{x}) \xrightarrow{y (y, x) y = x} \\ x \xrightarrow{y (x, y) x}$	$T(\mathbf{e}_1) = T(1, 0) = (0, 1)$ $T(\mathbf{e}_2) = T(0, 1) = (1, 0)$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

5 / 30

© Dewi Sintiari/CS Undiksha

・ロット (日本) (日本) (日本)

Reflection operators on \mathbb{R}^3

Operator	Illustration	Images of e1, e2, e3	Standard Matrix
Reflection about the <i>xy</i> -plane T(x, y, z) = (x, y, -z)	$x = \frac{z}{T(\mathbf{x})} \frac{x}{y}$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, -1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
Reflection about the <i>xz</i> -plane T(x, y, z) = (x, -y, z)	$(x, -y; z)$ $T(\mathbf{x})$ x y	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, -1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Reflection about the yz-plane T(x, y, z) = (-x, y, z)	$\begin{array}{c}z\\T(\mathbf{x})\\(x,y,z)\\\mathbf{x}\\\mathbf{x}\end{array}$	$T(\mathbf{e}_1) = T(1, 0, 0) = (-1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

6 / 30

© Dewi Sintiari/CS Undiksha

2. Projection

7 / 30 © Dewi Sintiari/CS Undiksha

Projection operators on \mathbb{R}^2

Projection operators or orthogonal projection operators are matrix operators on \mathbb{R}^2 (or \mathbb{R}^3) that map each point into its orthogonal projection onto a fixed line or plane through the origin.

Operator	Illustration	Images of e1 and e2	Standard Matrix
Orthogonal projection onto the <i>x</i> -axis T(x, y) = (x, 0)	$\begin{array}{c} \begin{array}{c} & y \\ & \mathbf{x} \\ & \mathbf$	$T(\mathbf{e}_1) = T(1, 0) = (1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 0)$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Orthogonal projection onto the y-axis T(x, y) = (0, y)	$\begin{array}{c c} & & & \\ \hline \\ & & & \\ \hline \\ \hline$	$T(\mathbf{e}_1) = T(1, 0) = (0, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 1)$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

8 / 30 © Dewi Sintiari/CS Undiksha

Projection operators on \mathbb{R}^3

Operator	Illustration	Images of e1, e2, e3	Standard Matrix
Orthogonal projection onto the <i>xy</i> -plane T(x, y, z) = (x, y, 0)	$x = \frac{x}{T(\mathbf{x})} \frac{y}{(x, y; 0)}$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 0)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Orthogonal projection onto the <i>xz</i> -plane T(x, y, z) = (x, 0, z)	$(x, 0, z) \xrightarrow{z} (x, y; z)$ $T(x) \xrightarrow{y} x$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 0, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Orthogonal projection onto the <i>yz</i> -plane T(x, y, z) = (0, y, z)	$x = \frac{z}{T(\mathbf{x})} (0, y; z)$	$T(\mathbf{e}_1) = T(1, 0, 0) = (0, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

9/30 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

3. Rotation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Rotation operators for \mathbb{R}^2

Rotation operators are matrix operators on \mathbb{R}^2 or \mathbb{R}^3 that move points along arcs of circles centered at the origin.

How to find the standard matrix for the rotation operator $T : \mathbb{R}^2 \to \mathbb{R}^2$ that moves points <u>counterclockwise</u> about the origin through a positive angle θ ?

 $T(\mathbf{e}_1) = T(1,0) = (\cos \theta, \sin \theta)$ and $T(\mathbf{e}_2) = T(0,1) = (-\sin \theta, \cos \theta)$ The standard transformation matrix for T is:

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2) = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

11 / 30 © Dewi Sintiari/CS Undiksha

Review on "angle"

Conversion from ° to rad

•
$$180^{o} = 1\pi$$
 rad

•
$$1^o = \frac{\pi}{180}$$
 rad

12 / 30 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Rotation operators for \mathbb{R}^2 (*cont.*)

The matrix:

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

is called the rotation matrix for \mathbb{R}^2 .

Let $\mathbf{x} = (x, y) \in \mathbb{R}^2$ and $\mathbf{w} = (w_1, w_2)$ be its image under the rotation. Then:

 $\mathbf{w} = R_{\theta} \mathbf{x}$

with:

$$w_1 = x \cos \theta - y \sin \theta$$
$$w_2 = x \sin \theta + y \cos \theta$$

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the origin through an angle θ	y (w_1, w_2) w (x, y)	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$	$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

13/30

© Dewi Sintiari/CS Undiksha

▲□▶▲□▶▲□▶▲□▶ □ のQで

Example: a rotation operator

Find the image of $\mathbf{x} = (1, 1)$ under a rotation of $\pi/6 \text{ rad} (= 30^{\circ})$ about the origin.

Solution:

We know that: $\sin(\pi/6) = \frac{1}{2}$ and $\cos(\pi/6) = \frac{\sqrt{3}}{2}$.

By the previous formula:

$$R_{\pi/6}\mathbf{x} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}-1}{2} \\ \frac{1+\sqrt{3}}{2} \end{bmatrix} \approx \begin{bmatrix} 0.37 \\ 1.37 \end{bmatrix}$$

14 / 30 © Dewi Sintiari/CS Undiksha

Rotations in \mathbb{R}^3

Rotations in \mathbb{R}^3 is commonly described as axis of rotation and a unit vector \boldsymbol{u} along that line.

Right-hand rule is used to establish a sign for the angle for rotation.

- If the axes are the axis x, y, or z, then take the unit vectors i, j, and k respectively.
- An angle of rotation will be *positive if it is counterclockwise* looking toward the origin along the positive coordinate axis and will be *negative if it is clockwise*.

15 / 30 © Dewi Sintiari/CS Undiksha

Rotations in \mathbb{R}^3

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the positive x-axis through an angle θ	x x	$w_1 = x$ $w_2 = y\cos\theta - z\sin\theta$ $w_3 = y\sin\theta + z\cos\theta$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$
Counterclockwise rotation about the positive y-axis through an angle θ	x x w	$w_1 = x \cos \theta + z \sin \theta$ $w_2 = y$ $w_3 = -x \sin \theta + z \cos \theta$	$\begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$
Counterclockwise rotation about the positive z-axis through an angle θ	x x x y	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$ $w_3 = z$	$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$

16 / 30

© Dewi Sintiari/CS Undiksha

4. Dilation and contraction

17 / 30 © Dewi Sintiari/CS Undiksha

Dilation & contraction

Let $k \in \mathbb{R}, k \geq 0$. The operator:

 $T(\mathbf{x}) = k\mathbf{x}$

on \mathbb{R}^2 or \mathbb{R}^3 defines the increment or decrement of the length of vector **x** by a factor of k.

- If k > 1, it is called a dilation with factor k;
- If $0 \le k \le 1$, it is called a contraction with factor k.

18 / 30 © Dewi Sintiari/CS Undiksha

Dilation & contraction on \mathbb{R}^2

・ロット (日本) (日本) (日本)

Dilation & contraction on \mathbb{R}^3

Operator	Illustration T(x, y, z) = (kx, ky, kz)	Standard Matrix
Contraction with factor k in R^3 $(0 \le k < 1)$	z = x = (x, y, z) $T(x) = (kx, ky, kz)$ y	$\begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \end{bmatrix}$
Dilation with factor k in R^3 (k > 1)	x = (kx, ky, kz) $T(x)$ $x = (x, y, z)$ y	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

5. Expansion and compression

21 / 30 © Dewi Sintiari/CS Undiksha

イロト 不得 トイヨト イヨト 三日

Expansion and compression

In a dilation or contraction of \mathbb{R}^2 or \mathbb{R}^3 , all coordinates are multiplied by a non-negative factor k.

Now what if **only one coordinate** is multiplied by k ?

- If k > 1, it is called the expansion with factor k in the direction of a coordinate axis (x, y, or z);
- If $0 \le k \le 1$, it is called compression

22 / 30 © Dewi Sintiari/CS Undiksha

▲□▶▲□▶▲□▶▲□▶ □ のQで

Expansion and compression in \mathbb{R}^2 (in *x*-direction)

Operator	$\begin{aligned} \text{Illustration} \\ T(x, y) &= (kx, y) \end{aligned}$	Effect on the Unit Square	Standard Matrix
Compression in the <i>x</i> -direction with factor <i>k</i> in R^2 $(0 \le k < 1)$	$\begin{array}{c} \begin{array}{c} y \\ (kx, y) \\ T(x) \end{array} \\ x \\$	(0, 1) $(0, 1)$ $($	$\begin{bmatrix} k & 0 \end{bmatrix}$
Expansion in the x-direction with factor k in R^2 (k > 1)	$\begin{array}{c} \mathbf{x} \\ $	(0, 1) $(0, 1)$ $($	

23 / 30 © Dewi Sintiari/CS Undiksha

Expansion and compression in \mathbb{R}^2 (in y-direction)

24 / 30 © Dewi Sintiari/CS Undiksha

イロト イポト イヨト イヨト

э

6. Shear

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ↔

Shear

A matrix operator of the form:

$$T(x,y) = (x + ky, y)$$

translates a point (x, y) in the xy-plane parallel to the x-axis by an amount ky that is proportional to the y-coordinate of the point.

This is called shear in the x-direction by a factor k.

Similarly, a matrix operator:

$$T(x,y) = (x,y+kx)$$

is called shear in the y-direction by a factor k.

When k > 0, then the shear is in the positive direction. When k < 0, it is in the negative direction.

Shear

27 / 30 © Dewi Sintiari/CS Undiksha

Example

Describe the matrix operator whose standard matrix is as follows:

$$A_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \qquad A_4 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Solution:

From the tables on the previous slides, we can see that:

- A₁ corresponds to a shear in the x-direction by a factor 2;
- A₂ corresponds to a shear in the x-direction by a factor -2;
- A₃ corresponds to a dilation with factor 2;
- A_4 corresponds to an expansion in the x-direction with factor 2.

28 / 30 © Dewi Sintiari/CS Undiksha

Example (cont.)

Describe geometrically the result of the transformation:

イロト イヨト イヨト

